Cart (Loading....) | Create Account
Close category search window

Large Scale URL-based Classification Using Online Incremental Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Singh, N. ; Xerox Res. Center Eur., Meylan, France ; Sandhawalia, H. ; Monet, N. ; Poirier, H.
more authors

We address the problem of large-scale topic classification of web pages based on the minimal text available in the URLs. This problem is challenging because of the sparsity of feature vectors that are derived from the URL text, and the typical asymmetry between the cardinality of train and test sets due to non-availability of sufficient sets of annotated URLs for training and very large test sets (e.g., in the case of large-scale focused crawling). We propose an online incremental learning algorithm which addresses these issues. Our experiments based on large publicly available datasets demonstrate an improvement of 0.11 -- 0.12 in terms of F-measure over the baseline algorithms, like Support Vector Machine, in difficult scenarios where the cardinality of train set is just a fraction of that of the test set.

Published in:

Machine Learning and Applications (ICMLA), 2012 11th International Conference on  (Volume:2 )

Date of Conference:

12-15 Dec. 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.