Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Personalized Recommendation in Folksonomies Using a Joint Probabilistic Model of Users, Resources and Tags

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Alper, M.E. ; Fac. of Comput. & Inf., Istanbul Tech. Univ., Istanbul, Turkey ; Ögüdücü, S.G.

The concept of Web 2.0 or "semantic web" has been getting more and more popular during the last half decade. The potential of very subtle yet important emergent semantics hidden in such environments calls for equally elegant and powerful methods to "mine" them. However, much of the previous work on model based recommender systems for folksonomies considered user to resource and resource to tag similarity separately, ignoring the dependency of users' interest to both the tags and the corresponding resources. In this paper, we propose a probabilistic personalized recommendation model, Latent Interest Model, that accounts for users, tags and resources jointly. The proposed method's performance is evaluated on real data sets obtained from a popular online bookmarking site using different performance measures for tag and resource recommendation tasks. Our experimental results show that our model captures personal preferences for tag usage and resource selection. Performance evaluation of Latent Interest Model indicates that the proposed personalized method yields significant improvement of recommendation accuracy.

Published in:

Machine Learning and Applications (ICMLA), 2012 11th International Conference on  (Volume:1 )

Date of Conference:

12-15 Dec. 2012