Cart (Loading....) | Create Account
Close category search window
 

Computer-aided detection of breast cancer nuclei

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Schnorrenberg, F. ; Dept. of Comput. Sci., Univ. of Cyprus, Nicosia, Cyprus ; Pattichis, C.S. ; Kyriacou, K.C. ; Schizas, C.N.

A computer-aided detection system for tissue cell nuclei in histological sections is introduced and validated as part of the Biopsy Analysis Support System (BASS). Cell nuclei are selectively stained with monoclonal antibodies, such as the anti-estrogen receptor antibodies, which are widely applied as part of assessing patient prognosis in breast cancer. The detection system uses a receptive field filter to enhance negatively and positively stained cell nuclei and a squashing function to label each pixel value as belonging to the background or a nucleus. In this study, the detection system assessed all biopsies in an automated fashion. Detection and classification of individual nuclei as well as biopsy grading performance was shown to be promising as compared to that of two experts. Sensitivity and positive predictive value were measured to be 83% and 67.4%, respectively. One major advantage of BASS stems from the fact that the system simulates the assessment procedures routinely employed by human experts; thus it can be used as an additional independent expert. Moreover, the system allows the efficient accumulation of data from large numbers of nuclei in a short time span. Therefore, the potential for accurate quantitative assessments is increased and a platform for more standardized evaluations is provided.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:1 ,  Issue: 2 )

Date of Publication:

June 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.