By Topic

Learning to Extract Entity Uniqueness from Web for Helping User Decision Making

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wenhan Wang ; Dept. of Math., Univ. of Washington, Seattle, WA, USA ; Ning Liu ; Yiran Xie

Web entities are the building blocks of human knowledge and users are making decisions among vast varieties of entities. For example, recommendation systems generate lists of entities to users, but seldom show the reasons of recommendation such as the uniqueness of each item to assist user decision making. In this paper, we mathematically define Web entity uniqueness and uniqueness patterns, based on which we propose a novel unsupervised natural language learning algorithm for entity uniqueness extraction. We leverage the bootstrapping strategy to recognize uniqueness from the free-text Web corpus with assistance from semi-structured Web such as lists, tables and query logs. To avoid extracting the subjective entity uniqueness, which may bias user decision making, we propose the probabilistic likelihood of a uniqueness property using bipartite graph models over entities and properties. Experiments verify that our algorithms have higher accuracy and coverage of entity uniqueness extraction technique compared to other related algorithms. We also show by conducting a user study survey that entity uniqueness information indeed positively supports user decision making.

Published in:

Data Mining Workshops (ICDMW), 2012 IEEE 12th International Conference on

Date of Conference:

10-10 Dec. 2012