By Topic

Geo-referenced Time-Series Summarization Using k-Full Trees: A Summary of Results

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
6 Author(s)
Oliver, D. ; Dept. of Comput. Sci., Univ. of Minnesota, Minneapolis, MN, USA ; Shekhar, S. ; Kang, J.M. ; Laubscher, R.
more authors

Given a set of regions with activity counts at each time instant (e.g., a listing of countries with number of mass protests or disease cases over time) and a spatial neighbor relation, geo-referenced time-series summarization (GTS) finds k-full trees that maximize activity coverage. GTS has important potential societal applications such as understanding the spread of political unrest, disease, crimes, fires, pollutants, etc. However, GTS is computationally challenging because (1) there are a large number of subsets of k-full trees due to the potential overlap of trees and (2) a region with no activity may be a part of a larger region with maximum activity coverage, making apriori-based pruning inapplicable. Previous approaches for spatio-temporal data mining detect anomalous or unusual areas and do not summarize activities. We propose a k-full tree (kFT) approach for GTS which features an algorithmic refinement for partitioning regions that leads to computational savings without affecting result quality. Experimental results show that our algorithmic refinement substantially reduces the computational cost. We also present a case study that shows the output of our approach on Arab Spring data.

Published in:

Data Mining Workshops (ICDMW), 2012 IEEE 12th International Conference on

Date of Conference:

10-10 Dec. 2012