Cart (Loading....) | Create Account
Close category search window
 

Hierarchical Classifier-Regression Ensemble for Multi-phase Non-linear Dynamic System Response Prediction: Application to Climate Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
8 Author(s)
Gonzalez, D.L. ; North Carolina State Univ., Raleigh, NC, USA ; Zhengzhang Chen ; Tetteh, I.K. ; Pansombut, T.
more authors

A dynamic physical system often undergoes phase transitions in response to fluctuations induced on system parameters. For example, hurricane activity is the climate system's response initiated by a liquid-vapor phase transition associated with non-linearly coupled fluctuations in the ocean and the atmosphere. Because our quantitative knowledge about highly non-linear dynamic systems is very meager, scientists often resort to linear regression techniques such as Least Absolute Deviation (LAD) to learn the non-linear system's response (e.g., hurricane activity) from observed or simulated system's parameters (e.g., temperature, precipitable water, pressure). While insightful, such models still offer limited predictability, and alternatives intended to capture non-linear behaviors such as Stepwise Regression are often controversial in nature. In this paper, we hypothesize that one of the primary reasons for lack of predictability is the treatment of an inherently multi-phase system as being phase less. To bridge this gap, we propose a hybrid approach that first predicts the phase the system is in, and then estimates the magnitude of the system's response using the regression model optimized for this phase. Our approach is designed for systems that could be characterized by multi-variate spatio-temporal data from observations, simulations, or both.

Published in:

Data Mining Workshops (ICDMW), 2012 IEEE 12th International Conference on

Date of Conference:

10-10 Dec. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.