By Topic

Adaptation and Use of Subjectivity Lexicons for Domain Dependent Sentiment Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dehkharghani, R. ; Dept. of Comput. Sci. & Eng., Sabanci Univ., Istanbul, Turkey ; Yanikoglu, B. ; Tapucu, D. ; Saygin, Y.

Sentiment analysis refers to the automatic extraction of sentiments from a natural language text. We study the effect of subjectivity-based features on sentiment classification on two lexicons and also propose new subjectivity-based features for sentiment classification. The subjectivity-based features we experiment with are based on the average word polarity and the new features that we propose are based on the occurrence of subjective words in review texts. Experimental results on hotel and movie reviews show an overall accuracy of about 84% and 71% in hotel and movie review domains respectively, improving the baseline using just the average word polarities by about 2% points.

Published in:

Data Mining Workshops (ICDMW), 2012 IEEE 12th International Conference on

Date of Conference:

10-10 Dec. 2012