By Topic

Exploiting Dynamic Privacy in Socially Regularized Recommenders

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bunea, R. ; ICT Sch., R. Institue of Technol. (KTH), Stockholm, Sweden ; Mokarizadeh, S. ; Dokoohaki, N. ; Matskin, M.

In this paper we introduce a privacy-aware collaborative filtering recommender framework which aims to address the privacy concern of profile owners in the context of social trust sparsity. While sparsity in social trust is mitigated by similarity driven trust using a probabilistic matrix factorization technique, the privacy issue is addressed by employing a dynamic privacy inference model. The privacy inference model exploits the underlying inter-entity trust information to obtain a personalized privacy view for each individual in the social network. We evaluate the proposed framework by employing an off-the-shelf collaborative filtering recommender method to make predictions using this personalized view. Experimental results show that our method offers better performance than similar non-privacy aware approaches, while at the same time meeting user privacy concerns.

Published in:

Data Mining Workshops (ICDMW), 2012 IEEE 12th International Conference on

Date of Conference:

10-10 Dec. 2012