By Topic

Overlapping Clustering with Sparseness Constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Haibing Lu ; OMIS, Santa Clara Univ., Santa Clara, CA, USA ; Yuan Hong ; Street, W.N. ; Fei Wang
more authors

Overlapping clustering allows a data point to be a member of multiple clusters, which is more appropriate for modeling many real data semantics. However, much of the existing work on overlapping clustering simply assume that a data point can be assigned to any number of clusters without any constraint. This assumption is not supported by many real contexts. In an attempt to reveal true data cluster structure, we propose sparsity constrained overlapping clustering by incorporating sparseness constraints into an overlapping clustering process. To solve the derived sparsity constrained overlapping clustering problems, efficient and effective algorithms are proposed. Experiments demonstrate the advantages of our overlapping clustering model.

Published in:

Data Mining Workshops (ICDMW), 2012 IEEE 12th International Conference on

Date of Conference:

10-10 Dec. 2012