Cart (Loading....) | Create Account
Close category search window
 

Considerations on Fairness-Aware Data Mining

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
4 Author(s)
Kamishima, T. ; Nat. Inst. of Adv. Ind. Sci. & Technol. (AIST), Tsukuba, Japan ; Akaho, S. ; Asoh, H. ; Sakuma, J.

With the spread of data mining technologies and the accumulation of social data, such technologies and data are being used for determinations that seriously affect individuals' lives. For example, credit scoring is frequently determined based on the records of past credit data together with statistical prediction techniques. Needless to say, such determinations must be nondiscriminatory and fair regarding sensitive features such as race, gender, religion, and so on. Several researchers have recently begun to develop fairness-aware or discrimination-aware data mining techniques that take into account issues of social fairness, discrimination, and neutrality. In this paper, after demonstrating the applications of these techniques, we explore the formal concepts of fairness and techniques for handling fairness in data mining. We then provide an integrated view of these concepts based on statistical independence. Finally, we discuss the relations between fairness-aware data mining and other research topics, such as privacy-preserving data mining or causal inference.

Published in:

Data Mining Workshops (ICDMW), 2012 IEEE 12th International Conference on

Date of Conference:

10-10 Dec. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.