Cart (Loading....) | Create Account
Close category search window
 

A Multi-armed Bandit Approach to Cost-Sensitive Decision Tree Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Lomax, S. ; Sch. of Comput., Sci. & Eng., Univ. of Salford, Salford, UK ; Vadera, S. ; Saraee, M.

Several authors have studied the problem of inducing decision trees that aim to minimize costs of misclassification and take account of costs of tests. The approaches adopted vary from modifying the information theoretic attribute selection measure used in greedy algorithms such as C4.5 to using methods such as bagging and boosting. This paper presents a new framework, based on game theory, which recognizes that there is a trade-off between the cost of using a test and the misclassification costs. Cost-sensitive learning is viewed as a Multi-Armed Bandit problem, leading to a novel cost-sensitive decision tree algorithm. The new algorithm is evaluated on five data sets and compared to six well known algorithms J48, EG2, MetaCost, AdaCostM1, ICET and ACT. The preliminary results are promising showing that the new multi-armed based algorithm can produce more cost-effective trees without compromising accuracy.

Published in:

Data Mining Workshops (ICDMW), 2012 IEEE 12th International Conference on

Date of Conference:

10-10 Dec. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.