By Topic

Discovering Aging-Genes by Topological Features in Drosophila melanogaster Protein-Protein Interaction Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xin Song ; Comput. Network Inf. Center, Beijing, China ; Yuan-Chun Zhou ; Kai Feng ; Yan-Hui Li
more authors

An important task of aging research is to find genes that regulate lifespan. Wet-lab identification of aging genes is tedious and labor-intensive activity. Developing an algorithm to predict aging genes will be greatly helpful. In this paper, we systematically analyzed topological features of proteins encoded by Drosophila melanogaster aging genes versus those encoded by non-aging genes in protein-protein interaction (PPI) network and found that aging genes are characterized by several network topological features such as higher in degrees. Based on these features, an algorithm was developed to detect aging genes genome wide. With a posterior probability score describing possible involvement in aging higher than 0.7, 54 novel aging genes were predicted. Evidence supporting our prediction can be found.

Published in:

Data Mining Workshops (ICDMW), 2012 IEEE 12th International Conference on

Date of Conference:

10-10 Dec. 2012