By Topic

Model Selection with Combining Valid and Optimal Prediction Intervals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Darko Pevec ; Fac. of Comput. & Inf. Sci., Univ. of Ljubljana, Ljubljana, Slovenia ; Igor Kononenko

In this paper we explore the possibility of automatic model selection in the supervised learning framework with the use of prediction intervals. First we compare two families of non-parametric approaches of constructing prediction intervals for arbitrary regression models. The first family of approaches is based on the idea of explaining the total prediction error as a sum of the model's error and the error caused by noise inherent to the data - the two are estimated independently. The second family assumes local similarity of the data and these approaches estimate the prediction intervals with use of the sample's nearest neighbors. The comparison shows that the first family strives to produce valid prediction intervals whereas the second family strives for optimality. We propose a statistic for model selection where we compare the discrepancy between valid and optimal prediction intervals. Experiments performed on a set of artificial datasets strongly support the hypothesis that for the correct model, this discrepancy is minimal among competing models.

Published in:

2012 IEEE 12th International Conference on Data Mining Workshops

Date of Conference:

10-10 Dec. 2012