Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at We apologize for any inconvenience.
By Topic

Enhancing the Analysis of Large Multimedia Applications Execution Traces with FrameMiner

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kengne, C.K. ; LIG, Univ. of Grenoble, St. Martin d'Heres, France ; Fopa, L.C. ; Ibrahim, N. ; Termier, A.
more authors

The analysis of multimedia application traces can reveal important information to enhance program comprehension. However traces can be very large, which hinders their effective exploitation. In this paper, we study the problem of finding a k-golden set of blocks that best characterize data. Sequential pattern mining can help to automatically discover the blocks, and we called k-golden set, a set of k blocks that maximally covers the trace. These kind of blocks can simplify the exploration of large traces by allowing programmers to see an abstraction instead of low-level events. We propose an approach for mining golden blocks and finding coverage of frames. The experiments carried out on video and audio application decoding show very promising results.

Published in:

Data Mining Workshops (ICDMW), 2012 IEEE 12th International Conference on

Date of Conference:

10-10 Dec. 2012