By Topic

Generalized Expansion Dimension

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Houle, M.E. ; Nat. Inst. of Inf., Tokyo, Japan ; Kashima, H. ; Nett, M.

In this paper we propose a framework for modeling the intrinsic dimensionality of data sets. The models can be viewed as generalizations of the expansion dimension, which was originally proposed for the analysis of certain similarity search indices using the Euclidean distance metric. Here, we extend the original model to other metric spaces: vector spaces with the Lp or vector angle (cosine similarity) distance measures, as well as product spaces for categorical data. We also provide a practical guide for estimating both local and global intrinsic dimensionality. The estimates of data complexity can subsequently be used in the design and analysis of algorithms for data mining applications such as search, clustering, classification, and outlier detection.

Published in:

Data Mining Workshops (ICDMW), 2012 IEEE 12th International Conference on

Date of Conference:

10-10 Dec. 2012