By Topic

Postlayout logic restructuring using alternative wires

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shih-Chieh Chang ; AT&T Bell Labs., Murray Hill, NJ, USA ; Kwang-Ting Cheng ; Nam-Sung Woo ; Marek-Sadowska, M.

In this paper, we propose a layout-driven synthesis approach for field programmable gate arrays (FPGA's). The approach attempts to identify alternative wires and alternative functions for wires that cannot be routed due to the limited routing resources in FPGA. The alternative wires (in the logic level) that can be routed through less congested areas substitute the unroutable wires without changing the circuit's functionality. Allowing the logic blocks to have alternative functions also increases the chance of successful routing. A redundancy addition and removal technique is used to identify such alternative wires. Experimental results are presented to demonstrate the usefulness of this approach. For a set of randomly selected benchmark circuits, on the average, 30-50% of wires have alternative wires. These results indicate that the routing flexibility can be substantially increased by considering these alternative wires. Our prototype system successfully completed routing for two AT&T designs that cannot be handled by an FPGA router alone. The proposed synthesis technique can also be applied to standard cell and gate array designs to reduce the routing area

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:16 ,  Issue: 6 )