By Topic

BP Neural Networks with Harmony Search Method-based Training for Epileptic EEG Signal Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Gao, X.Z. ; Coll. of Inf. Eng., Shanghai Maritime Univ., Shanghai, China ; Jing Wang ; Tanskanen, J.M.A. ; Rongfang Bie
more authors

In this paper, the Harmony Search (HS)-based BP neural networks are used for the classification of the epileptic electroencephalogram (EEG) signals. It is well known that the gradient descent-based learning method can result in local optima in the training of BP neural networks, which may significantly affect their approximation performances. Two HS methods, the original version and a new variation recently proposed by the authors of the present paper, are applied here to optimize the weights in the BP neural networks for the classification of the epileptic EEG signals. Simulations have demonstrated that the classification accuracy of the BP neural networks can be remarkably improved by the HS method-based training.

Published in:

Computational Intelligence and Security (CIS), 2012 Eighth International Conference on

Date of Conference:

17-18 Nov. 2012