By Topic

Preference Based Multiobjective Evolutionary Algorithm for Constrained Optimization Problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ning Dong ; Sch. of Comput. Sci. & Technol., Xidian Univ., Xi'an, China ; Fei Wei ; Yuping Wang

Constrained optimization problems (COPs) are converted into a bi-objective optimization problem first, and a novel fitness function based on achievement scalarizing function (ASF) is presented. The fitness function adopts the valuable properties of ASF and can measure the merits of individuals by the weighting distance from the ndividuals to the reference point, where the reference point and the weighting vector reflect the preference of decision makers. In the initial stage of the evolution, the main preference should be put in generating more feasible solutions, and in the later stage of the evolution, the main preference should be put in improving the objective function. For this purpose, the proper reference point and weighting vector are chosen adaptively to realize the preference in different evolutionary stages. Then a new preference based multiobjective evolutionary algorithm is proposed based on all these. The numerical experiments for four standard test functions with different characteristic illustrate that the new proposed algorithm is effective and efficient.

Published in:

Computational Intelligence and Security (CIS), 2012 Eighth International Conference on

Date of Conference:

17-18 Nov. 2012