Cart (Loading....) | Create Account
Close category search window

Achieving the capacity of any DMC using only polar codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sutter, D. ; Dept. of Inf. Technol. & Electr. Eng., ETH Zurich, Zurich, Switzerland ; Renes, J.M. ; Dupuis, F. ; Renner, R.

We construct a channel coding scheme to achieve the capacity of any discrete memoryless channel based solely on the techniques of polar coding. In particular, we show how source polarization and randomness extraction via polarization can be employed to “shape” uniformly-distributed i.i.d. random variables into approximate i.i.d. random variables distributed according to the capacity-achieving distribution. We then combine this shaper with a variant of polar channel coding, constructed by the duality with source coding, to achieve the channel capacity. Our scheme inherits the low complexity encoder and decoder of polar coding. It differs conceptually from Gallager's method for achieving capacity, and we discuss the advantages and disadvantages of the two schemes. An application to the AWGN channel is discussed.

Published in:

Information Theory Workshop (ITW), 2012 IEEE

Date of Conference:

3-7 Sept. 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.