By Topic

Design space exploration in application-specific hardware synthesis for multiple communicating nested loops

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Application specific MPSoCs are often used to implement high-performance data-intensive applications. MPSoC design requires a rapid and efficient exploration of the hardware architecture possibilities to adequately orchestrate the data distribution and architecture of parallel MPSoC computing resources. Behavioral specifications of data-intensive applications are usually given in the form of a loop-based sequential code, which requires parallelization and task scheduling for an efficient MPSoC implementation. Existing approaches in application specific hardware synthesis, use loop transformations to efficiently parallelize single nested loops and use Synchronous Data Flows to statically schedule and balance the data production and consumption of multiple communicating loops. This creates a separation between data and task parallelism analyses, which can reduce the possibilities for throughput optimization in high-performance data-intensive applications. This paper proposes a method for a concurrent exploration of data and task parallelism when using loop transformations to optimize data transfer and storage mechanisms for both single and multiple communicating nested loops. This method provides orchestrated application specific decisions on communication architecture, memory hierarchy and computing resource parallelism. It is computationally efficient and produces high-performance architectures.

Published in:

Embedded Computer Systems (SAMOS), 2012 International Conference on

Date of Conference:

16-19 July 2012