By Topic

Image denoising based on the symmetric normal inverse Gaussian model and non-subsampled contourlet transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhou, Y. ; Sch. of Electr. & Inf. Eng., Soochow Univ., Suzhou, China ; Wang, J.

In this study, an adaptive image denoising method is proposed based on the symmetric normal inverse Gaussian (SNIG) model and the non-subsampled contourlet transform (NSCT). In the framework of Bayesian maximum a posteriori estimation, the problem of denoising is reduced to a procedure of thresholding. A novel strategy is then proposed to determine the threshold that is not only adaptive to different directions and scales, but also able to take into considerations the scale-to-scale difference in the contribution of the NSCT coefficients to the noise. The experimental results in different kinds of sample images show that the authors' method can not only result in higher peak-signal-to-noise ratio values, but also have better visual effects in reduced processing artefacts and preserved edges.

Published in:

Image Processing, IET  (Volume:6 ,  Issue: 8 )