By Topic

A W-Band Wide Locking Range and Low DC Power Injection-Locked Frequency Tripler Using Transformer Coupled Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yen-Liang Yeh ; Dept. of Electr. Eng., Nat. Central Univ., Jhongli, Taiwan ; Hong-Yeh Chang

A W-band wide locking range injection-locked frequency tripler (ILFT) with low dc power consumption is presented in this paper. By using a transformer coupled (TC) topology, the proposed TC-ILFT features the following advantages: 1) the negative resistance of the cross-coupled pair is not degraded due to the proposed TC-ILFT without source degeneration, and the TC-ILFT can be operated in lower dc supply voltage as compared to the conventional ILFTs; 2) the dc bias of the injector can be properly designed for maximizing locking range; 3) the parasitic capacitance provided by the injector can be reduced due to the impedance transformation; and 4) the larger device size of the injector can be chosen enhancing the third harmonic. Moreover, the operation frequency and the locking range of this work are boosted using a multiorder resonator. A theoretical model of the proposed TC-ILFT is also established and it has been carefully verified with the experimental results. The free-running oscillation frequency of the proposed TC-ILFT is 94.51 GHz. As the input power is -1 dBm, the measured locking range is 5.9 GHz without varactor tunning. The dc supply voltage and the power consumption are 0.7 V and 1 mW, respectively.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:61 ,  Issue: 2 )