Cart (Loading....) | Create Account
Close category search window
 

Highly conductive die attach adhesive from percolation control and its applications in light-emitting device thermal management

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Zhang, Xinfeng ; Department of Mechanical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong ; Zhang, Kai ; Zhang, Min ; Yang, Chen
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.4772800 

Herein, we reported on the study of percolation dynamics in thermoset-based die attach (DA) materials and its effect on percolation conductivity. Two types of percolation mechanism in thermoset based DA were discovered, i.e., the curing reaction-induced percolation and the physical aging-induced percolation. The former features in a fast percolation network growth rate, which is one order of magnitude higher than the latter. It is demonstrated that the percolation kinetics largely affects the apparent percolation conductivity under the traditional packaging conditions; and reaction-induced percolation allows ultrahigh efficiency in reaching the volume fraction-limiting percolation conductance, resulting in enhanced thermal performance of DA.

Published in:

Applied Physics Letters  (Volume:102 ,  Issue: 1 )

Date of Publication:

Jan 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.