By Topic

Parallel particle swarm optimization clustering algorithm based on MapReduce methodology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ibrahim Aljarah ; Dept. of Comput. Sci., North Dakota State Univ., Fargo, ND, USA ; Simone A. Ludwig

Large scale data sets are difficult to manage. Difficulties include capture, storage, search, analysis, and visualization of large data. In particular, clustering of large scale data has received considerable attention in the last few years and many application areas such as bioinformatics and social networking are in urgent need of scalable approaches. The new techniques need to make use of parallel computing concepts in order to be able to scale with increasing data set sizes. In this paper, we propose a parallel particle swarm optimization clustering (MR-CPSO) algorithm that is based on MapReduce. The experimental results reveal that MR-CPSO scales very well with increasing data set sizes and achieves a very close to the linear speedup while maintaining the clustering quality. The results also demonstrate that the proposed MR-CPSO algorithm can efficiently process large data sets on commodity hardware.

Published in:

Nature and Biologically Inspired Computing (NaBIC), 2012 Fourth World Congress on

Date of Conference:

5-9 Nov. 2012