By Topic

From filter to mid-range wireless power transfer system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
4 Author(s)
Sheng Sun ; Univ. of Hong Kong, Hong Kong, China ; Danting Xu ; Liu, Q.S. ; Fujiang Lin

In this paper, a wireless power transfer (WPT) system based on two spiral magnetic-coupled resonators is studied and realized on the printed circuit board (PCB). For the mid-range energy transfer, the microwave filter design theory can be employed to explain the basic principle of magnetic induction in WPT system. Based on the filtering transfer function, the power transfer efficiency is defined by Scattering matrix. In particular, the transfer distance between two resonators can be easily optimized according to the filtering specifications. As an example, Chebyshev function is selected to synthesize the two-pole transmission peaks, which is so-called frequency splitting in power community. Then, the transfer distances can be determined from the required external Q-factor and coupling coefficient. Finally, a PCB-based WPT system fed by two loops is designed, implemented, and verified experimentally.

Published in:

Radio-Frequency Integration Technology (RFIT), 2012 IEEE International Symposium on

Date of Conference:

21-23 Nov. 2012