By Topic

Demand response plan considering available spinning reserve for system frequency restoration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Le-Ren Chang-Chien ; Nat. Cheng Kung Univ., Tainan, Taiwan ; Luu Ngoc An ; Ta-Wei Lin

In the proposed frequency restoration plan, demand response is adopted as the first shedding option for intercepting frequency decline in order to avoid the unexpected load shedding, then followed by the scheduled generation reserve to raise frequency back to the normal state. This paper starts with the frequency response analysis using a low-order frequency response model. Results of the frequency response analysis show that, if the magnitude of system disturbance is accurately estimated following the moment of incident, the estimate could be intelligently used to deploy appropriate demand response for frequency restoration. Tests of the proposed frequency restoration scheme are evaluated by simulation where the system data is utilized by records of historical frequency events from a utility. Test results show that the deployment of the demand response could enhance frequency security under various contingency scenarios.

Published in:

Power System Technology (POWERCON), 2012 IEEE International Conference on

Date of Conference:

Oct. 30 2012-Nov. 2 2012