By Topic

A study on global solar radiation forecasting models using meteorological data and their application to wide area forecast

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Fumitoshi Nomiyama ; Res. Inst., Kyushu Electr. Power Co. Inc., Fukuoka, Japan ; Joji Asai ; Takuma Murakami ; Hirotaka Takano
more authors

Two models are proposed for forecasting global solar radiation. The forecasted values are used to predict the output power of photovoltaic systems installed in power systems and control the output of other generators to meet the electricity demand. One of the models is used for at least one-day-ahead demand and supply planning. The other model is used for three-hour-ahead demand and supply operation. The models are based on weather information and use descriptive statistics and binary trees respectively. The focus is on estimation of the anticipated variations in the forecasts and dealing with the nonlinearity of the relationship between the global solar radiation and the input variables. In addition, the smoothing effect of the errors is investigated and utilized when they are applied to wide area forecasting. The results show that they are promising in keeping the balance between demand and supply in power systems with photovoltaic systems installed.

Published in:

Power System Technology (POWERCON), 2012 IEEE International Conference on

Date of Conference:

Oct. 30 2012-Nov. 2 2012