By Topic

Real-time estimation of tyre-road friction peak with optimal linear parameterisation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
de Castro, R. ; Fac. de Eng., Univ. do Porto, Porto, Portugal ; Araújo, R.E. ; Freitas, D.

Spurred by the problem of identifying, in real-time, the adhesion levels between the tyre and the road, a practical, linear parameterisation (LP) model is proposed to represent the tyre friction. Towards that aim, results from the theory of function approximation, together with optimisation techniques, are explored to approximate the non-linear Burckhardt model with a new LP representation. It is shown that, compared with other approximations described in the literature, the proposed LP model is more efficient, that is, it requires a smaller number of parameters, and provides better approximation capabilities. Next, a modified version of the recursive least squares, subject to a set of equality constraints on parameters, is employed to identify the LP in real time. The inclusion of these constraints, arising from the parametric relationships present when the tyre is in free-rolling mode, reduces the variance of the parametric estimation and improves the convergence of the identification algorithm, particularly in situations with low tyre slips. The simulation results obtained with the full-vehicle CarSim model under different road adhesion conditions demonstrate the effectiveness of the proposed LP and the robustness of the friction peak estimation method. Furthermore, the experimental tests, performed with an electric vehicle under low-grip roads, provide further validation of the accuracy and potential of the estimation technique.

Published in:

Control Theory & Applications, IET  (Volume:6 ,  Issue: 14 )