By Topic

Rapid Sintering Nanosilver Joint by Pulse Current for Power Electronics Packaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yunhui Mei ; Tianjin Key Lab. of Adv. Joining Technol., Tianjin Univ., Tianjin, China ; Yunjiao Cao ; Gang Chen ; Xin Li
more authors

Sintering of nanosilver paste has been extensively studied as a lead-free die-attach solution for bonding semiconductor chips. The bonding process typically consists of a low-temperature drying step to remove organic solvents in the paste followed by sintering at around 250°C . Normally, a soak time of several minutes at the sintering temperature is necessary to establish strong bond strength by the conventional heating method. In this paper, we tested the feasibility of applying pulses of alternating electrical current through the nanosilver bonding layer to achieve strong joints in less than a second, not minutes. Experiments were carried out by joining rectangular copper blocks that were either coated with a layer of electroplated silver or without. A layer of nanosilver paste was stencil printed on one block, dried at temperature below 100°C, before the other copper block was placed on. The bonding members were then inserted under an alternating-current spot-welding machine for rapid joining with current pulses. Die-shear test was used to quantify the joint strength. Investigated processing variables on the joint strength were current level, current-on time, nanosilver bondline thickness, predrying temperature and time, and copper surface finish. Scanning electron microscopy was used to characterize the joint microstructure. It is suggestive that the current sintering of nanosilver paste could be used for rapid joining of metal-to-metal connection, such as bonding copper bus bars onto power electronics modules.

Published in:

Device and Materials Reliability, IEEE Transactions on  (Volume:13 ,  Issue: 1 )