By Topic

Single-Error-Correction Code for Simultaneous Testing of Data Bit and Check Bit Arrays for Word-Oriented Memories

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sanguhn Cha ; Yonsei University, Seoul, Korea ; Hongil Yoon

A novel single-error-correction (SEC) code is proposed in order to test various fault models simultaneously in both data bit and check bit arrays for word-oriented memories (WOMs). Simultaneous testing of data bit and check bit arrays eliminates the test time and hardware overheads required for separate check bit array tests. The testable faults using the proposed SEC code are the most well-known memory fault models such as single-cell faults and interword and intraword coupling faults. The regularity in data backgrounds (DBs) corresponding to these fault models for WOM tests is investigated. Henceforth, the proposed SEC code is constructed to generate the identical DB patterns for data bit and check bit arrays. Simultaneous testing of data bit and check bit arrays using the proposed SEC codes brings a significant decrease of about 9.9%-33.3% in the time required for memory array tests for 8, 16, 32, and 64 data bits per word. In addition, the number of ones in the H-matrix of the proposed SEC code is brought close to the theoretical minimum number, thereby reducing the complexity of the check bit generator. For various applications, the proposed SEC code can be represented by many forms of H-matrices.

Published in:

IEEE Transactions on Device and Materials Reliability  (Volume:13 ,  Issue: 1 )