By Topic

Face Verification With Local Sparse Representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chih-Hsueh Duan ; Dept. of Comput. Sci., Nat. Tsing Hua Univ., Hsinchu, Taiwan ; Chen-Kuo Chiang ; Shang-Hong Lai

In this letter, a local sparse representation is proposed for face components to describe the local structure and characteristics of the face image for face verification. We first learn a dictionary from collected local patches of face images. Then, a novel local descriptor is presented by using sparse coefficients obtained by the learned dictionary and local face patches from face components to represent the entire human face. We demonstrate the performance of the proposed local sparse representation method on several publicly available datasets. Extensive experiments on both CMU PIE dataset and the challenging LFW database have shown the effectiveness of the proposed method.

Published in:

Signal Processing Letters, IEEE  (Volume:20 ,  Issue: 2 )