By Topic

Piezoelectric Vibratory-Cantilever Force Sensors and Axial Sensitivity Analysis for Individual Triaxial Tactile Sensing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kaoru Yamashita ; Kyoto Institute of Technology, Kyoto, Japan ; Yi Yang ; Takanori Nishimoto ; Kazuya Furukawa
more authors

Vibratory force sensors are fabricated using piezoelectric capacitors on microcantilever structures for triaxial sensitivity by the individual sensor element. The cantilevers have been formed into a 3-D curved shape by controlling residual stress combination of the multilayered structure. Triaxial tactile sensitivity of the cantilever sensor is analyzed under a tactile load application onto the surface of an elastomer in which the cantilever is embedded, mimicking human skin structure. The cantilever is converse-piezoelectrically excited by an external ac voltage and three resonant modes are developed to detect the applied load vector components by the single sensor element. Resonant frequency shifts of each mode are investigated upon load applications. The results show that the frequencies vary to the three axial tactile loads independently and they can be superposed with corresponding to the superposition of the load components. The applied load vectors are estimated by resonant frequencies of the single cantilever sensor with compensating nonlinearities of the sensor response. The estimated error is less than 1.1% to the full scale of the load ±4 kPa.

Published in:

IEEE Sensors Journal  (Volume:13 ,  Issue: 3 )