By Topic

Steady-State Raman Gain in Diamond as a Function of Pump Wavelength

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Savitski, V.G. ; Inst. of Photonics, Univ. of Strathclyde, Glasgow, UK ; Reilly, S. ; Kemp, A.J.

The variation in the Raman gain coefficient in single-crystal diamond for pump wavelengths between 355 and 1450 nm is measured. Two techniques are used: a pump-probe approach giving an absolute measurement and a stimulated Raman oscillation threshold technique giving a relative measurement. Both approaches indicate that the Raman gain coefficient is a linear function of pump wavenumber. With the pump polarized along a <; 111 >; direction in the crystal, the Raman gain coefficient measured by the pump-probe technique is found to vary from 7.6 ± 0.8 for a pump wavelength of 1280 nm to 78 ± 8 cm/GW for a pump wavelength of 355 nm. With the established dependence of the Raman gain coefficient on the pump wavelength, the Raman gain coefficient can be estimated at any pump wavelength within the spectral range from 355 up to 1450 nm.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:49 ,  Issue: 2 )