Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Validation of a Probabilistic Approach to Outdoor Localization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kejiong Li ; Sch. of Electron. Eng. & Comput. Sci., Queen Mary, Univ. of London, London, UK ; Bigham, J. ; Tokarchuk, L.

The validation of a probabilistic fingerprinting approach for outdoor location estimation using received signal strength (RSS) from GSM base stations (BSs) is described. The proposed approach is compared with a traditional probabilistic algorithm for three different area partitioning methods. Two contrasting real environments are used for the comparisons: one is a city environment and the other one is a rural setting. For each test-bed, over 9000 data points are collected over 170,000 and 110,000 square meters respectively. For each environment, principal components analysis (PCA) is globally used to remove the least useful transmitters to avoid unnecessary calculations. Then each environment is partitioned into different clusters based on RSS. PCA is again used within each cluster. The proposed scheme retains accuracy by not losing the substantial RSS correlations in each cluster, but also accommodates the different RSS distributions in each cluster. The experimental results show that the positioning accuracy is significantly improved and our clustering scheme gives good support for location estimation.

Published in:

Wireless Communications Letters, IEEE  (Volume:2 ,  Issue: 2 )