Cart (Loading....) | Create Account
Close category search window
 

Communication security for smart grid distribution networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Bou-Harb, E. ; Concordia Univ., Montreal, QC, Canada ; Fachkha, C. ; Pourzandi, M. ; Debbabi, M.
more authors

The operation and control of the next generation electrical grids will depend on a complex network of computers, software, and communication technologies. Being compromised by a malicious adversary would cause significant damage, including extended power outages and destruction of electrical equipment. Moreover, the implementation of the smart grid will include the deployment of many new enabling technologies such as advanced sensors and metering, and the integration of distributed generation resources. Such technologies and various others will require the addition and utilization of multiple communication mechanisms and infrastructures that may suffer from serious cyber vulnerabilities. These need to be addressed in order to increase the security and thus the greatest adoption and success of the smart grid. In this article, we focus on the communication security aspect, which deals with the distribution component of the smart grid. Consequently, we target the network security of the advanced metering infrastructure coupled with the data communication toward the transmission infrastructure. We discuss the security and feasibility aspects of possible communication mechanisms that could be adopted on that subpart of the grid. By accomplishing this, the correlated vulnerabilities in these systems could be remediated, and associated risks may be mitigated for the purpose of enhancing the cyber security of the future electric grid.

Published in:

Communications Magazine, IEEE  (Volume:51 ,  Issue: 1 )

Date of Publication:

January 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.