By Topic

Fusion of visual cues of intensity and texture in Markov random fields image segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Dawoud ; University of Southern Mississippi, MS, USA ; A. Netchaev

This study proposes an algorithm that fuses visual cues of intensity and texture in Markov random fields region growing texture image segmentation. The idea is to segment the image in a way that takes EdgeFlow edges into consideration, which provides a single framework for identifying objects boundaries based on texture and intensity descriptors. This is achieved by modifying the energy minimisation process, so that it would penalise merging regions that have EdgeFlow edges in the boundary between them. Experimental results confirm the hypothesis that the integration of edge information increases the precision of the segmentation by ensuring the conservation of the homogeneous objects contours during the region growing process.

Published in:

IET Computer Vision  (Volume:6 ,  Issue: 6 )