By Topic

Characteristic of p-Type Junctionless Gate-All-Around Nanowire Transistor and Sensitivity Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
7 Author(s)
Ming-Hung Han ; Dept. of Electron. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Chun-Yen Chang ; Yi-Ruei Jhan ; Jia-Jiun Wu
more authors

The characteristics and sensitivities of p-type junctionless (JL) gate-all-around (GAA) (JLGAA) nanowire transistors are demonstrated by simulating a 3-D quantum transport device with a view to their use in CMOS technology. The concentration of dopants in a p-type JL nanowire transistor is not as high as that in an n-type device owing to solid solubility of boron in silicon. However, we can use a midgap material as gate electrode to design an appropriate device threshold voltage. The p-type JLGAA transistor exhibits a favorable on/off current ratio and better short-channel characteristics than a conventional inversion-mode transistor with a GAA structure. Sensitivity analyses reveal that the channel thickness and random dopant fluctuation substantially affect the device performance in terms of threshold voltage (Vth), on current (Ion), and subthreshold slope because of the full depletion condition of the channel. The channel length and oxide thickness have less impact because the short-channel effect is well controlled.

Published in:

Electron Device Letters, IEEE  (Volume:34 ,  Issue: 2 )