By Topic

A Framework for Optimal Placement of Energy Storage Units Within a Power System With High Wind Penetration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ghofrani, M. ; Electr. Eng. Dept., Univ. of Nevada, Reno, NV, USA ; Arabali, A. ; Etezadi-Amoli, M. ; Fadali, M.S.

This paper deals with optimal placement of the energy storage units within a deregulated power system to minimize its hourly social cost. Wind generation and load are modeled probabilistically using actual data and a curve fitting approach. Based on a model of the electricity market, we minimize the hourly social cost using probabilistic optimal power flow (POPF) then use a genetic algorithm to maximize wind power utilization over a scheduling period. A business model is developed to evaluate the economics of the storage system based on the energy time-shift opportunity from wind generation. The proposed method is used to carry out simulation studies for the IEEE 24-bus system. Transmission line constraints are addressed as a bottleneck for efficient wind power integration with higher penetration levels. Distributed storage is then proposed as a solution to effectively utilize the transmission capacity and integrate the wind power more efficiently. The potential impact of distributed storage on wind utilization is also evaluated through several case studies.

Published in:

Sustainable Energy, IEEE Transactions on  (Volume:4 ,  Issue: 2 )