By Topic

Quantization Effect on the Log-Likelihood Ratio and Its Application to Decentralized Sequential Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yan Wang ; Sch. of Ind. & Syst. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Yajun Mei

It is well known that quantization cannot increase the Kullback-Leibler divergence which can be thought of as the expected value or first moment of the log-likelihood ratio. In this paper, we investigate the quantization effects on the second moment of the log-likelihood ratio. It is shown via the convex domination technique that quantization may result in an increase in the case of the second moment, but the increase is bounded above by 2/e. The result is then applied to decentralized sequential detection problems not only to provide simpler sufficient conditions for asymptotic optimality theories in the simplest models, but also to shed new light on more complicated models. In addition, some brief remarks on other higher-order moments of the log-likelihood ratio are also provided.

Published in:

Signal Processing, IEEE Transactions on  (Volume:61 ,  Issue: 6 )