By Topic

A Finite-State Machine for Accommodating Unexpected Large Ground-Height Variations in Bipedal Robot Walking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hae-Won Park ; Dept. of Mech. Eng., Univ. of Michigan, Ann Arbor, MI, USA ; Ramezani, A. ; Grizzle, J.W.

This paper presents a feedback controller that allows MABEL, which is a kneed planar bipedal robot with 1-m-long legs, to accommodate terrain that presents large unexpected increases and decreases in height. The robot is provided no information regarding where the change in terrain height occurs and by how much. A finite-state machine is designed that manages transitions among controllers for flat-ground walking, stepping-up and -down, and a trip reflex. If the robot completes a step, the depth of a step-down or the height of a step-up can be immediately estimated at impact from the lengths of the legs and the angles of the robot's joints. The change in height can be used to invoke a proper control response. On the other hand, if the swing leg impacts an obstacle during a step, or has a premature impact with the ground, a trip reflex is triggered on the basis of specially designed contact switches on the robot's shins, contact switches at the end of each leg, and the current configuration of the robot. The design of each control mode and the transition conditions among them are presented. This paper concludes with experimental results of MABEL (blindly) accommodating various types of platforms, including ascent of a 12.5-cm-high platform, stepping-off an 18.5-cm-high platform, and walking over a platform with multiple ascending and descending steps.

Published in:

Robotics, IEEE Transactions on  (Volume:29 ,  Issue: 2 )