By Topic

Measurement of UV from a Microplasma by a Microfabricated Amorphous Selenium Detector

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Abbaszadeh, S. ; Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Waterloo, ON, Canada ; Karim, K.S. ; Karanassios, V.

We spectrally demonstrate for the first time that an amorphous selenium metal-semiconductor-metal detector can be used for the measurement of ultraviolet photons (200-400 nm) generated from a portable battery-operated microplasma that is used as a light source. An advantage of this low-cost detector is that the device structure allows photons to strike the light-sensitive layer directly rather than through electrodes or blocking layers. Another advantage is that despite operation at high electric fields of up to 43 V/μm, the dark current of the detector at room temperature is 3 pA/mm2. Therefore, detector cooling is not required, and this facilitates portability for measurements on-site (i.e., in the field and away from a laboratory). Spectral response was monitored using a scanning monochromator, and it was compared with that obtained by a portable spectrometer fitted with a linear charge-coupled device detector. To demonstrate detector responsivity, emission signals with an appreciable signal-to-noise ratio were obtained by introducing nanogram amounts of the sample into the microplasma.

Published in:

Electron Devices, IEEE Transactions on  (Volume:60 ,  Issue: 2 )