By Topic

International Industry Practice on Power System Load Modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Milanovic, J.V. ; Sch. of Electr. & Electron. Eng., Univ. of Manchester, Manchester, UK ; Yamashita, K. ; Martinez Villanueva, S. ; Djokic, S.Z.
more authors

Power system load modeling is a mature and generally well researched area which, as many other in electrical power engineering at the present time, is going through a period of renewed interest in both industry and academia. This interest is fueled by the appearance of new non-conventional types of loads (power electronic-based, or interfaced through power electronics) and requirements to operate modern electric power systems with increased penetration of non-conventional and mostly intermittent types of generation in a safe and secure manner. As a response to this renewed interest, in February 2010 CIGRE established working group C4.605: “Modelling and aggregation of loads in flexible power networks”. One of the first tasks of the working group was to identify current international industry practice on load modeling for static and dynamic power system studies. For that purpose, a questionnaire was developed and distributed during the summer/autumn of 2010 to more than 160 utilities and system operators in over 50 countries on five continents. This paper summarizes some of the key findings from about 100 responses to the questionnaire received by September 2011 and identifies prevalent types of load models used as well as typical values of their parameters.

Published in:

Power Systems, IEEE Transactions on  (Volume:28 ,  Issue: 3 )