By Topic

Discriminative and Generative Classification Techniques Applied to Automated Neonatal Seizure Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Thomas, E.M. ; INRIA Sophia Antipolis, Valbonne, France ; Temko, A. ; Marnane, W.P. ; Boylan, G.B.
more authors

A number of automated neonatal seizure detectors have been proposed in recent years. However, there exists a large variability in the morphology of seizure and background patterns, both across patients and over time. This has resulted in relatively poor performance from systems which have been tested over large datasets. Here, the benefits of employing a pattern recognition approach are discussed. Such a system may use numerous features paired with nonlinear classifiers. In particular, two types of nonlinear classifiers are contrasted for the task. Additionally, it is shown that the proposed architecture allows for efficient classifier combination which improves the performance of the algorithm. The resulting automated detector is shown to achieve field leading performance. A particular strength of the proposed algorithm is the performance of the algorithm when very low false detections are required, at 0.25 false detections per hour, the system is able to detect 75.4% of the seizure events.

Published in:

Biomedical and Health Informatics, IEEE Journal of  (Volume:17 ,  Issue: 2 )