By Topic

WESD--Weighted Spectral Distance for Measuring Shape Dissimilarity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Konukoglu, E. ; Med. Sch., Athinoula A. Martinos Center for Biomed. Imaging, Harvard Univ., Cambridge, MA, USA ; Glocker, B. ; Criminisi, A. ; Pohl, K.M.

This paper presents a new distance for measuring shape dissimilarity between objects. Recent publications introduced the use of eigenvalues of the Laplace operator as compact shape descriptors. Here, we revisit the eigenvalues to define a proper distance, called Weighted Spectral Distance (WESD), for quantifying shape dissimilarity. The definition of WESD is derived through analyzing the heat trace. This analysis provides the proposed distance with an intuitive meaning and mathematically links it to the intrinsic geometry of objects. We analyze the resulting distance definition, present and prove its important theoretical properties. Some of these properties include: 1) WESD is defined over the entire sequence of eigenvalues yet it is guaranteed to converge, 2) it is a pseudometric, 3) it is accurately approximated with a finite number of eigenvalues, and 4) it can be mapped to the ([0,1)) interval. Last, experiments conducted on synthetic and real objects are presented. These experiments highlight the practical benefits of WESD for applications in vision and medical image analysis.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:35 ,  Issue: 9 )