By Topic

Proximity-Based Clustering: A Search for Structural Consistency in Data With Semantic Blocks of Features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Pedrycz, W. ; Dept. of Electr. & Comput. Eng., Univ. of Alberta, Edmonton, AB, Canada

A class of clustering problems that is studied here is concerned with the development of a structure of a global nature given a collection of structures (clusters) constructed locally for data that are represented by several collections (blocks) of features. These blocks of features come with a well-defined semantics. For instance, in spatiotemporal data, a certain block of features concerns a spatial component of the data (say, x-y or x-y-z coordinates), while another one deals with the features that describe time series associated with the corresponding locations. The results of clustering that are being produced locally are reconciled by minimizing a distance between the proximity matrices that are formed at the higher conceptual level and induced by the individual partition matrices. The optimization problem is formulated and presented along with its iterative scheme.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:21 ,  Issue: 5 )