Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Reed-Solomon Virtual Codes Based Novel Algorithm for Sparse Channel Estimation in OFDM Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Abdelkefi, F. ; COSIM Lab., Univ. of Carthage, Tunis, Tunisia ; Ayadi, J.

In this paper, we present a novel efficient algorithm for the estimation of the Channel Impulse Response (CIR) when this CIR is sparse (meaning a big number of the CIR coefficients are equal to zero) for multicarrier systems using Orthogonal Frequency-Division Multiplexing (OFDM) transmission. The derivation of this CIR estimation algorithm investigates first the sparse structure of the channel through the modeling of the sparse CIR as a Bernoulli-Gaussian process. This established modeling will allow us to exploit the relationship between the Reed-Solomon (RS) codes and the OFDM modulator to efficiently estimate the sparse CIR. To do so, we consider the pilot tones that are usually scattered among the information sequence for the synchronization or equalization purposes, as syndromes in order to estimate the sparse channel coefficients, and we prove that using our proposed algorithm, the obtained estimates are unbiased and that the estimation error is quasi-optimum. Furthermore, our proposed technique keeps valid even in the case where the pilots tones are assumed to be not uniformly placed in the transmitted sequence provided that their positions satisfy a repartition condition. Simulation results are presented to illustrate the performance of our proposed algorithm and to support our claims.

Published in:

Vehicular Technology Conference (VTC Fall), 2012 IEEE

Date of Conference:

3-6 Sept. 2012