By Topic

Multiresolution wavelet-based approach to identification of modal parameters of a vehicle full-scale crash test

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pawlus, W. ; Dept. of Eng., Univ. of Agder, Grimstad, Norway ; Karimi, H.R. ; Robbersmyr, K.G.

In this work estimation of vehicle modal parameters was achieved by application of a wavelet-based method. The time-frequency analysis, which comprises those techniques that study a signal in both the time and frequency domains simultaneously, using Morlet wavelet properties are applied to the measured acceleration pulse of the colliding vehicle. Determination of the ridge of the wavelet coefficients matrix makes it possible to identify the frequency components of the recorded crash pulse. Subsequently, by using the estimated natural frequency of the system, the values of damping factor for a given mode shape are assessed. In this work there are concerned both: the major frequencies of the crash pulse and damping factor for the major mode shape.

Published in:

Intelligent Control (ISIC), 2012 IEEE International Symposium on

Date of Conference:

3-5 Oct. 2012