By Topic

Joint Social and Content Recommendation for User-Generated Videos in Online Social Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Zhi Wang ; Dept. of Comput. Sci. & Technol., Tsinghua Univ., Beijing, China ; Lifeng Sun ; Wenwu Zhu ; Shiqiang Yang
more authors

Online social network is emerging as a promising alternative for users to directly access video contents. By allowing users to import videos and re-share them through the social connections, a large number of videos are available to users in the online social network. The rapid growth of the user-generated videos provides enormous potential for users to find the ones that interest them; while the convergence of online social network service and online video sharing service makes it possible to perform recommendation using social factors and content factors jointly. In this paper, we design a joint social-content recommendation framework to suggest users which videos to import or re-share in the online social network. In this framework, we first propose a user-content matrix update approach which updates and fills in cold user-video entries to provide the foundations for the recommendation. Then, based on the updated user-content matrix, we construct a joint social-content space to measure the relevance between users and videos, which can provide a high accuracy for video importing and re-sharing recommendation. We conduct experiments using real traces from Tencent Weibo and Youku to verify our algorithm and evaluate its performance. The results demonstrate the effectiveness of our approach and show that our approach can substantially improve the recommendation accuracy.

Published in:

Multimedia, IEEE Transactions on  (Volume:15 ,  Issue: 3 )