Scheduled System Maintenance on December 17th, 2014:
IEEE Xplore will be upgraded between 2:00 and 5:00 PM EST (18:00 - 21:00) UTC. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Analytical Approach to Design of Proportional-to-the-Absolute-Temperature Current Sources and Temperature Sensors Based on Heterojunction Bipolar Transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Golovins, E. ; Dept. of Electr., Electron. & Comput. Eng., Univ. of Pretoria, Pretoria, South Africa ; Sinha, S.

Embedded temperature sensors based on proportional-to-the-absolute-temperature (PTAT) current sources have the potential to lay the foundation for low-cost temperature-aware integrated circuit architectures if they meet the requirements of miniaturization, fabrication process match, and precise estimation in a wide range of temperatures. This paper addresses an analytical approach to the minimum-element PTAT circuit design capitalizing on the physics-based modeling of the heterojunction bipolar transistor (HBT) structures. It is shown that a PTAT circuit can be implemented on only two core HBT elements with good accuracy. Derived parametric relations allow a straightforward specification of the thermal gain at the design stage, which affects sensor sensitivity. Further derived current-to-temperature mapping expresses a temperature estimate based on the measured PTAT output current. Numerical examples indicate attainable estimation accuracy of 0.43% in case of a measurement instance taken in the absence of measurement noise.

Published in:

Components, Packaging and Manufacturing Technology, IEEE Transactions on  (Volume:3 ,  Issue: 2 )