By Topic

Design and realization of an accurate built-in current sensor for on-line power dissipation measurement and IDDQ testing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Arabi, K. ; Opmaxx Inc., Beaverton, OR, USA ; Kaminska, B.

Built-in current sensor (BICS) is known to enhance test accuracy, defect coverage and test rate of quiescent current (IDDQ) testing method in CMOS VLSI circuits. For new deep-submicron technologies, BICSs become essential for accurate and practical IDDQ testing. This paper presents a new BICS suitable for on-line power dissipation measurement and IDDQ testing. Although the BICS presented in this paper is dedicated to submicron technologies that require reduced supply voltage, it can also be used for applications and technologies requiring normal supply voltage. The proposed BICS has been extended for on-line measurement of the power dissipation using only an additional capacitor. Power dissipation measurement is important for safety-critical applications and battery-powered systems. A simple self-test approach to verify the functionality and accuracy of BICSs has also been introduced. The proposed BICS has been implemented and tested using an N-well CMOS 1.2 μm technology. Practical results demonstrate that a very good measurement accuracy can be achieved

Published in:

Test Conference, 1997. Proceedings., International

Date of Conference:

1-6 Nov 1997